121 research outputs found

    Power Switching Protocol for Two-way Relaying Network under Hardware Impairments

    Get PDF
    In this paper, we analyze the impact of hardware impairments at relay node and source node (i.e. imperfect nodes) on network performance by evaluating outage probability based on the effective signal to noise and distortion ratio (SNDR). Especially, we propose energy harvesting protocol at the relay and source nodes, namely, power switching imperfect relay (PSIR) and power switching imperfect source (PSIS). Aiming to determine the performance of energy constrained network, we first derive closed-form expressions of the outage probability and then the throughput can be maximized in delay-limited transmission mode. The simulation results provide practical insights into the impacts of hardware impairments and power switching factors of the energy harvesting protocol on the performance of energy harvesting enabled two-way relaying network

    PERFORMANCE ANALYSIS IN WIRELESS POWERED D2D- AIDED NON-ORTHOGONAL MULTIPLE ACCESS NETWORKS

    Get PDF
    This paper examine how to integrate energy harvesting (EH) to non-orthogonal multiple access (NOMA) networks. Recently, device-to-device (D2D) underlaying licensed network is introduced as novel transmission mode to perform two nearby user equipment units (UEs) communicating directly without signal processing through the nearest base station (BS). By wireless power transfer, they can be further operational to D2D communications in which a UE may harvest energy from RF signal of dedicated power beacons (PB) to help EH assisted UEs communicate with each other or assist these UEs to communicate with the BS. In particular, we investigate outage and throughput performance in a scenario of D2D communications powered by RF signal where one UE may help other two UEs to exchange information with optimal throughput

    Wireless Powered Cooperative Relaying using NOMA with Imperfect CSI

    Full text link
    The impact of imperfect channel state (CSI) information in an energy harvesting (EH) cooperative non-orthogonal multiple access (NOMA) network, consisting of a source, two users, and an EH relay is investigated in this paper. The relay is not equipped with a fixed power source and acts as a wireless powered node to help signal transmission to the users. Closed-form expressions for the outage probability of both users are derived under imperfect CSI for two different power allocation strategies namely fixed and dynamic power allocation. Monte Carlo simulations are used to numerically evaluate the effect of imperfect CSI. These results confirm the theoretical outage analysis and show that NOMA can outperform orthogonal multiple access even with imperfect CSI.Comment: 6 pages, 6 figures, accepted in IEEE GLOBECOM 2018 NOMA Worksho

    On outage probability and throughput performance of cognitive radio inspired NOMA relay system

    Get PDF
    To improve the throughput and the outage probability of the Cognitive Radio (CR) inspired system, a novel Non-Orthogonal Multiple Access (NOMA) can be deployed to adapt multiple services in 5G wireless communication. In this scheme, after the reception of the superposition coded symbol with a predefined power allocation factors from the primary source, the relay decodes and forwards with a new superposition coded symbol (i.e. allocating another power factors) to the destination. By employing twin antenna design at the relay, the bandwidth efficiency in such scheme will be improved. Assuming Rayleigh fading channels, the closed-form expressions in terms of throughput and the outage performance are derived. Through numerical results, they showed that the outage performance of the proposed scheme using a Single Antenna (SA) scheme at the relay is better than a Twin Antenna (TA) scheme because SA scheme is not affected by its own antenna interference

    Improving performance of far users in cognitive radio: Exploiting NOMA and wireless power transfer

    Get PDF
    In this paper, we examine non-orthogonal multiple access (NOMA) and relay selection strategy to benefit extra advantage from traditional cognitive radio (CR) relaying systems. The most important requirement to prolong lifetime of such network is employing energy harvesting in the relay to address network with limited power constraint. In particular, we study such energy harvesting CR-NOMA using amplify-and-forward (AF) scheme to improve performance far NOMA users. To further address such problem, two schemes are investigated in term of number of selected relays. To further examine system performance, the outage performance needs to be studied for such wireless powered CR-NOMA network over Rayleigh channels. The accurate expressions for the outage probability are derived to perform outage comparison of primary network and secondary network. The analytical results show clearly that position of these nodes, transmit signal to noise ratio (SNR) and power allocation coefficients result in varying outage performance. As main observation, performance gap between primary and secondary destination is decided by both power allocation factors and selection mode of single relay or multiple relays. Numerical studies were conducted to verify our derivations.Web of Science1211art. no. 220

    Investigation on energy harvesting enabled device-to-device networks in presence of co-channel interference

    Get PDF
    Energy harvesting from ambient radio-frequency (RF) sources has been a novel approach for extending the lifetime of wireless networks. In this paper, a cooperative device-to-device (D2D) system with the aid of energy-constrained relay is considered. The relays are assumed to be able to harvest energy from information signal and co-channel interference (CCI) signals broadcasted by nearby traditional cellular users and forward the source’s signal to its desired destination (D2D user) utilizing amplify-andforward (AF) relaying protocol. Time switching protocol (TSR) and power splitting protocol (PSR) are proposed to assist energy harvesting and information processing at the relay. The proposed approaches are applied in a model with three nodes including the source (D2D user), the relay and the destination (D2D user), the system throughput is investigated in terms of the ergodic capacity and the outage capacity, where the analytical results are obtained approximately. Our numerical results verify the our derivations, and also points out the impact of CCI on system performance. Finally, this investigation provide fundamental design guidelines for selecting hardware of energy harvesting circuits that satisfies the requirements of a practical cooperative D2D system

    Study on transmission over Nakagami-m fading channel for multiple access scheme without orthogonal signal

    Get PDF
    In this paper, a downlink performance in non-orthogonal multiple access (NOMA) system is considered. With regard to different priority for two NOMA users, we exploit the closed-form expressions of outage probability over wireless fading channel following Nakagami-m fading. The fixed power allocation factor scheme is examined to reduce the complexity in computation regarding performance analysis. In our analysis, perfect successive interference cancellation (SIC) is applied in order to achieve perfect signal decoding operation. Simulation results show that the considered NOMA downlink scheme is affected by transmit SNR, power allocation factors, fading parameters

    Performance gap of two users in downlink full-duplex cooperative NOMA

    Get PDF
    A full-duplex non-orthogonal multiple access (FD-NOMA) systems are expected to play a significant role in fifth generation (5G) networks, addressing spectrum efficiency and massive connections. In this regard, the feasibility of FD communications to improve spectrum utilization is main consideration in term of outage performance. Specifically, we derive exact formulas of outage probability for FD-NOMA, over Nakagami-m fading channels. Extensive analysis revealed that higher quality of channel leads to better performance. We verify expressions throughout Monte-Carlo simulations

    Outage and throughput performance of cognitive radio based power domain based multiple access

    Get PDF
    This paper considers power domain based multiple access (PDMA) in cognitive radio network to serve numerous users who intend to multiple access to core network. In particular, we investigate the effect of signal combination scheme equipped at PDMA end-users as existence of direct link and relay link. This system model using relay scheme provides performance improvement on the outage probability of two PDMA end-users. We first propose a simple scheme of fixed power allocation to PDMA users who exhibit performance gap and fairness. Inspired by PDMA strategy, we then find signal to noise ratio (SNR) to detect separated signal for each user. In addition, the exact expressions of outage probability are derived in assumption that receiver can cancel out the interference completely with successive interference cancellation (SIC). By exploiting theoretical and simulation results, both considered combination schemes (Maximal Ratio Combining (MRC) and Selection Combining (SC) can achieve improved performance of two PDMA users significantly
    corecore